Self-tuning PID Control of Induction Motor Speed Control System Based on Diagonal Recurrent Neural Network

نویسنده

  • Chong Chen
چکیده

The performance optimization of induction motor speed control system is studied and self-tuning PID controller based on diagonal recurrent neural network (DRNN) is presented in this paper. Neural network control does not require the precise mathematical model of the system, and it only needs to train neural network online or offline, then use the training results to design the control system. It is applicable of the nonlinear, strong coupling and multi variable system, which is composed of inverter and induction motor. The speed regulation control performances are tested on the experimental platform constructed by SIMATIC S7-300 power PLC. The results of experiment indicate that, compared with conventional PID controller, induction motor speed control system, which is controlled by self-tuning PID controller based on DRNN, has better static-dynamic and following performances, stronger anti-interference ability and robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller

In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...

متن کامل

Speed Observer Design for Linear Induction Motor Drives

In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...

متن کامل

Design of a Robust and Adaptive Sensorless Speed Controller for Induction Motor Drives Using General regression Neural Network Based Fuzzy Approach

The main purpose of this paper is to apply the Fuzzy based General Regression Neural Network (FGRNN) to the speed control of induction motor. A General Regression Neural Network (GRNN) is adopted to estimate the motor speed and thus provide a sensorless speed estimator system. The performance of the proposed FGRNN speed controller is evaluated for a wide range of operating conditions for induct...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015